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In this paper we apply to gravitational waves (GW) from the inspiral phase of binary systems a recently

derived frequentist methodology to calculate analytically the error for a maximum likelihood estimate of

physical parameters. We use expansions of the covariance and the bias of a maximum likelihood estimate

in terms of inverse powers of the signal-to-noise ration (SNR)s where the square root of the first order in

the covariance expansion is the Cramer Rao lower bound (CRLB). We evaluate the expansions, for the

first time, for GW signals in noises of GW interferometers. The examples are limited to a single, optimally

oriented, interferometer. We also compare the error estimates using the first two orders of the expansions

with existing numerical Monte Carlo simulations. The first two orders of the covariance allow us to get

error predictions closer to what is observed in numerical simulations than the CRLB. The methodology

also predicts a necessary SNR to approximate the error with the CRLB and provides new insight on the

relationship between waveform properties, SNR, dimension of the parameter space and estimation errors.

For example the timing match filtering can achieve the CRLB only if the SNR is larger than the Kurtosis

of the gravitational wave spectrum and the necessary SNR is much larger if other physical parameters are

also unknown.

DOI: 10.1103/PhysRevD.81.124048 PACS numbers: 04.30.Db, 04.80.Cc

I. INTRODUCTION

The ground-based gravitational waves detectors LIGO,
Virgo, and GEO 600 [1–3] are rapidly improving in sensi-
tivity. By 2015, advanced versions of these detectors
should be taking data with a design sensitivity approxi-
mately 10 times greater than the previous generation, and
the probed volume will grow by a factor of about a thou-
sand. Such improvements in detector sensitivity mean that
the first gravitational-wave signature of a compact-binary
coalescence (CBC) could be detected in the next few years
(see, for example, [4]).

Among the expected signals, a special role is covered by
inspiralling compact binaries. This follows from the ability
to model the phase and amplitude of the signals quite
accurately and consequently to maximize the signal-to-
noise ratio (SNR) by using matched filtering techniques.
Matched filters also provide a maximum likelihood esti-
mation (MLE) of the waveform parameters such as com-
ponent masses or time of coalescence. The choice of the
MLEs as reference estimators is also motivated by the fact
that if an unbiased estimator that attains the CRLB exists,
is the MLE [5].

The existing GW frequentist literature [5–18] evaluates
the MLE accuracy in two ways: (a) analytically by calcu-
lating the so-called Fisher information matrix (FIM), or
equivalently the Cramer Rao lower bound (CRLB), which
is the square root of the diagonal elements of the inverse
FIM, and (b) numerically by performing Monte Carlo
simulations. The FIM was derived analytically in
[10,11,13] using Newtonian waveforms, extended to

second-order post-Newtonian [14,15] and recently revis-
ited up to 3.5 PN [6,7].
In [6,7] the authors calculate the CRLB for the three

standard binary systems (NNS, NBH, BBH), and show
how the errors change when the successive different PN
orders are taken into account. They consider initial LIGO,
advanced LIGO and Virgo noises. They also considers PN
corrections to the amplitude. Monte Carlo simulations
were performed, for example, in [8,9], for the lowest PN
orders, where it is also suggested that the inclusion of the
higher PN orders would be computationally expensive.
More recent Monte Carlo simulations with 3.5 PN wave-
forms are described in [18]. We did not try to compare the
uncertainties derived here to other existing papers (espe-
cially those from the 1990s) since different parameter sets,
noise spectra (even for the same antenna) and PN terms
were used. For example, in [12] a comparison between the
CRLB and other bounds is done for a waveform at the 0th
PN order. This work also uses different conventions on the
waveform spectrum than more recent literature. In [13]
phasing is extended to the 1.5 PN order. The spin parame-
ters are taken in account but the noise spectrum for LIGO is
different than the currently used design noise curves. In
[8,14,15] the 2 PN wave was used. In the work [14]
interesting observations are made about the fluctuation of
the parameters variance with the PN orders, analyzing both
the case of spin and spinless systems. The fluctuations of
the variance in the spinless case is also stressed in [6].
The CRLB is a convenient tool to approximate the

accuracies in large SNRs and to obtain error bounds for
unbiased estimators. Unfortunately, for low SNRs (below

PHYSICAL REVIEW D 81, 124048 (2010)

1550-7998=2010=81(12)=124048(16) 124048-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.81.124048


20) where the first detections might emerge, the CRLB can
grossly underestimate the errors [8,12,19,20]. The reason
is that with nonlinear data models and (or) with non-
Gaussian noises, the CRLB depends only on the curvature
of the likelihood function around the true value of the
parameter.

In this paper we apply a recently derived analytical tool
[21–24]to better predict a MLE accuracy and to establish
necessary conditions on the SNR for the MLE error to
attain the CRLB. Explicitly, within the frequentist frame-
work, for arbitrary probability distribution of the noise,
expansions of the bias and the covariance of a MLE in
inverse powers of the SNR are discussed. The first order of
the expansion of the variance is the inverse of the FIM. By
requiring that the second-order covariance is smaller, or
much smaller, than the first order, this approach predicts a
necessary SNR to approximate the error with the CRLB.
The higher order of the expansions are determinant in the
low SNR regime where the inverse FIM underestimates the
error.

We compared the errors computed using the first two
orders of the expansions to the Monte Carlo simulations in
[18]. We observed the first two orders of the expansions
provide error predictions closer than the CRLB to what is
observed in the numerical simulations. In [18] the simula-
tions are related to the FIM to establish ranges of SNR
where the CRLB describes the error. Our expansions pre-
dict the same SNR range of validity for the CRLB. The
expansions are sensitive to the side lobes of the likelihood
function because they make use of higher order derivatives
than the second one (which is only sensitive to the curva-
ture of the main lobe). The methodology also provides new
insight on the relationship between waveform properties,
SNR, dimension of the parameter space, and estimation
errors. For example, as noted in [22] for an arrival-time
matched-filter estimate in white noise, the accuracy
achieves the CRLB only if the SNR is larger than the
Kurtosis of the gravitational wave spectrum. Here we
also notice that the necessary SNR is much larger if the
other physical parameters are unknown. More specifically,
the MLE of the arrival time for NS-NS binary signals
might require a SNR equal to 2 with the time as the only
parameter or 15 when all the other parameters are un-
known. These results are important to understand the do-
main of validity of recent papers like [16] that defines 90%
confidence regions in direction reconstruction with time
triangulation. The regions discussed in [16] for SNR
smaller than 10 are based on timing MLEs, with the arrival
time being the only unknown parameter, and the time
uncertainties quantified by the CRLB.

We also note that [25], using a formalism introduced in
[19,20], describes a consistency criterion, different from
the condition derived in this paper, for the validity of the
CRLB that, if applied to a 4 pp compact-binary signal
computed with a 2 PN expansion and m1 ¼ m2 ¼ 10M�,

requires a SNR of at least 10. At the time of the writing of
this paper, we established with M. Vallisneri that the
Eq. (3.19) of this paper becomes, in the one parameter
case and colored Gaussian noise, equivalent to Eq. (60) in
[25] or (A35) in [19]. A comparison for the Gaussian noise
and multiparameter case is the object of current work,
while a comparison for arbitrary noise is not possible
because [19,25] use Gaussian noises from the beginning
of their derivations. The explicit calculations shown here
for different GWs are also not performed in [19,25].
In Sec. II we present the explicit expressions of the

expansions of the bias and the covariance matrix for arbi-
trary noise and size of the parameter space. In Sec. III we
explain how the expansion can be evaluated for signals in
additive colored Gaussian noise. In Sec. IV we describe the
post-Newtonian inspiral waveform used for the examples,
the parameter space and the initial and advanced LIGO
noises. In Sec. V we study the one-dimensional parameter
space results when only one parameter at a time is consid-
ered unknown. In Sec. VI we present the results for full
parameter space with the initial and advanced LIGO
noises. We also compare our results with published results
from Monte Carlo simulations. In Sec. VII we present
some conclusions, and in the appendix we describe the
derivation of the expansions as well as the relationship of
this method with the statistics literature.

II. EXPANSIONS FOR THE BIAS AND
COVARIANCEMATRIX OFA FREQUENTIST MLE

IN ARBITRARY NOISE

In this section we present the first two orders of the
expansions in inverse powers of the SNR for the bias and
the covariance matrix. The details of the derivation are
provided in Appendix A. Given an experimental data
vector x ¼ fx1; . . . ; xNg, where N is the dimension, we
assume that the data are described by a probability density
Pðx; #Þ that depends on a D-dimensional parameter vector
# ¼ f#1; . . . ; #Dg. According to [26], we suppose that the

MLE #̂ ¼ f#̂1; . . . ; #̂Dg of # is given by a stationary point
of the likelihood function lðx; #Þ ¼ lnðPðx; #ÞÞ with re-
spect to the components of #

lrðx; #̂Þ ¼ @lðx; #Þ
@#r

��������#¼#̂
¼ 0r ¼ 1; . . . ; D: (2.1)

If we introduce the notations

la1a2...as ¼ la1a2...asðx; #Þ ¼
@slðx; #Þ

@#a1@#a2 . . . @#as

�a1a2...as;...;b1b2...bs ¼ E½la1a2...as . . . lb1b2...bs�
where ��ab is the Fisher information matrix iab ¼
��ab ¼ �E½lab� ¼ E½lalb� (E½:� is the expected value),
the first two orders of the bias for the MLE of the r
component of the parameter vector # are given by

b1ð#̂mÞ ¼ 1
2i
maibcð�abc þ 2�c;abÞ (2.2)
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b2ð#̂mÞ ¼ � imaibc

2
½vabc þ 2vab;c� þ imaibdice

8
½vabcde þ 4vac;bde þ 8vde;abc þ 4vabce;d þ 4vabc;d;e þ 8vab;cd;e�

þ imaibcidfieg

4
½ð2vafedvgb;c þ 2vbedfvac;g þ 4vabedvgf;cÞ þ ðvafedvgcb þþ2vabedvgcf þ 2vdbegvacfÞ

þ ð2vaedvgb;fc þ 4vacfvdg;eb þ 4vbedvac;gf þ 2vfcbvag;edÞ þ ð4vafe;gvdb;c þ 4vafe;cvdb;g þ 4vdbe;gvaf;cÞ
þ ð2vabe;gvcdf þ 4vdbe;gvacf þ 4vabe;fvcfg þ 2vdge;bvacfÞ þ ð4vag;fcved;b þ 4ved;fcvag;b þ 4vag;edvfc;bÞ

þ ð4vacgvef;b;d þ 2vcdevab;f;gÞ þ 2

3
vabdevc;f;g� þ imaibcideifgiti

8
½vadfðvebcvgti þ 2vetcvgbi þ 4vgbevtci

þ 8vgbtveci þ 2vebcvgt;i þ 4vetcvgb;i þ 2vgtiveb;c þ 4vgtcveb;i þ 8vgbtvce;i þ 8vgbtvci;e þ 8vgbevct;i

þ 8vctevgb;i þ 4vctivgb;e þ 4vgt;iveb;c þ 4veb;ivgt;c þ 8vgt;bvic;e þ 8vgt;evic;b þ 4vbetvg;c;iÞ
þ vdcið8vbgtvae;f þ 4vbgfvae;t þ 8vae;tvbg;f þ 8vae;fvbg;t þ 8vaf;bvge;tÞ� (2.3)

were we assumed the Einstein convention to sum over
repeated indices. For the covariance matrix the first order
is the inverse of the Fisher information matrix while the
second order is given in by (for simplicity we provide the
diagonal terms):

C2ð#jÞ ¼ �ijj þ ijmijnipqð2�nq;m;p þ �nmpq þ 3�nq;pm

þ 2�nmp;q þ �mpq;nÞ þ ijmijnipziqt½ð�npm

þ �n;mpÞð�qzt þ 2�t;zqÞ þ �npqð52�mzt þ 2�m;tz

þ �m;t;zÞ þ �nq;zð6�mpt þ 2�pt;m þ �mp;tÞ�:
(2.4)

III. EXPANSIONS FOR SIGNALS IN ADDITIVE
COLORED GAUSSIAN NOISE

For this analysis we assume that the output of an opti-
mally oriented GW interferometer has the form:

xðtÞ ¼ hðt; �Þ þ wðtÞ (3.1)

where hðt; �Þ is the signal, which depends on the parame-
ters vector �, and wðtÞ a stationary Gaussian noise with
zero mean. The probability distribution can be written as

pðxÞ / exp

�
� 1

2

Z
½xðtÞ � hðt; �Þ��ðt� t1Þ½xðt1Þ

� hðt1; �Þ�dtdt1
�
: (3.2)

The first and second derivative of the log-likelihood give

la � @ logpðxÞ
@�a

¼
Z

haðt; �Þ�ðt� t1Þ½xðt1Þ � hðt1; �Þ�dtdt1; (3.3)

lab � @la
@�b

¼
Z
½habðt; �Þ�ðt� t1Þ½xðt1Þ � hðt1; �Þ�

� haðt; �Þ�ðt� t1Þhbðt1; �Þ�dtdt1; (3.4)

iab ¼ E½lalb� ¼ �E½lab�
¼

Z
haðt; �Þ�ðt� t1Þhbðt1; �Þdtdt1 ¼ (3.5)

¼
Z

dfdf0haðfÞhbðf0Þ�ð�f;�f0Þ: (3.6)

It is easy to verify that

�ðf; f0Þ ¼ �ðfþ f0Þ
ShðfÞ ; (3.7)

where we have introduced, ShðfÞ, the one sided power
spectral density defined as the Fourier transform of the
noise autocorrelation:

RðtÞ ¼ E½nðtþ �Þnð�Þ�: (3.8)

ShðfÞ �
Z

dte�2�iftRðtÞ: (3.9)

Notice that the sign convention in (3.7) follows from the
implicit assumption that RðtÞ is the Fourier transform of
E½nðfÞnðf0Þ�. In the literature, another convention with the
minus sign is also found corresponding to defining RðtÞ as
the Fourier transform of E½nðfÞn�ðf0Þ�. Using the relation
hð�fÞ ¼ hðfÞ�, we can finally write the FIM:

iab ¼ E½lalb� ¼ hhaðfÞ; hbðfÞi; (3.10)

where haðfÞ are the derivatives of the Fourier transform of
the signal with respect to the ath parameter. We have
introduced a mean in the frequency space:

huðfÞ; vðfÞi � 4R
�Z fcut

flow

df
uðfÞvðfÞ�
ShðfÞ

�
; (3.11)
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where the range of integration depends on the antenna
properties and the theoretical model for the binary system.

The SNR corresponds to the optimal filter:

�2 � hhðfÞ; hðfÞi ¼ 4
Z fcut

flow

df
jhðfÞj2
ShðfÞ :

We can express in the same way all the quantities we
need in order to calculate the second-order variance, like
scalar products of hðfÞ derivatives.

�a;b ¼ ��ab ¼ iab ¼ hha; hbi (3.12)

�ab;c ¼ hhab; hci (3.13)

�abc ¼ �hhab; hci � hhac; hbi � hhbc; hai (3.14)

�ab;cd ¼ hhab; hcdi þ hha; hbihhc; hdi (3.15)

�abc;d ¼ hhabc; hdi (3.16)

�abcd ¼ �hhab; hcdi � hhac; hbdi � hhad; hbci � hhabc; hdi
� hhabd; hci � hhacd; hbi � hhbcd; hai (3.17)

�ab;c;d ¼ hha; hbihhc; hdi ¼ iabicd: (3.18)

If one uses these functions, the form for the second-order
variance, Eq. (2.4) can be further simplified:

C2ð#jÞ ¼ ijmijnipqð�nmpq þ 3hhnq; hpmi þ 2�nmp;q

þ �mpq;nÞ þ ijmijnipziqtðvnpmvqzt þ 5
2vnpqvmzt

þ 2vqz;nvmtp þ 2vqp;zvnmt þ 6vmqpvnt;z

þ vpqzvnt;m þ 2vmq;zvpt;n þ 2vpt;zvmq;n

þ vmz;tvnq;pÞ: (3.19)

IV. INSPIRAL PHASE WAVEFORM FOR BINARY
SYSTEMS

We apply the general results of the theory to the case of a
binary system in the inspiral phase. Starting from the
3.5 PN phasing formula [27] we write the Fourier trans-
form of the chirp signal:

hðtÞ ¼ aðtÞ½ei�ðtÞ þ e�i�ðtÞ�; (4.1)

where �ðfÞ is the implicit solution of the 3.5 PN phasing
formula, using the stationary phase approximation (SPA)
[28,29]. The final result is

hðfÞ ¼ Af�ð7=6Þeic ðfÞ: (4.2)

The phase is given by

c ðfÞ ¼ 2�ft��� �

4
þ 3

128�v5

XN
k¼0

	kv
k; (4.3)

where t and � are the arrival time and the arrival phase.
The function v can be defined either in terms of the total
mass of the binary system, M ¼ m1 þm2, or in terms of

the chirp mass, M ¼ �3=5M:

v ¼ ð�MfÞ1=3 ¼ ð�fMÞ1=3��ð1=5Þ;

where � is the symmetrized mass ratio

� ¼ m1m2

M2
:

The amplitude is a function of the chirp mass, the effective
distance, and the orientation of the source:

A / M5=6QðanglesÞ=D:

The coefficients 	k’s with k ¼ 0 . . .N (the meaning of
each terms being the k

2 PN contribution) are given by

	0 ¼ 1; 	1 ¼ 0; 	2 ¼ 20

9

�
743

336
þ 11

4
�

�
; 	3 ¼ �16�; 	4 ¼ 10

�
3 058 673

1 016 064
þ 5429

1008
�þ 617

144
�2

�

	5 ¼ �

�
38 645

756
þ 38 645

252
log

v

vlso

� 65

9
�

�
1þ 3 log

v

vlso

��

	6 ¼
�
11 583 231 236 531

4 694 215 680
� 640

3
�2 � 6848

21



�
þ �

�
� 15 335 597 827

3 048 192
þ 2255

12
�2 � 1760

3
�þ 12 320

9
�

�

þ 76 055

1728
�2 � 127 825

1296
�3 � 6858

21
log4v;

	7 ¼ �

�
77 096 675

254 016
þ 378 515

1512
�� 74 045

756
�2

�
;

where � ’ �0:6451, � ’ �1:28. 
 is the Euler constant,
and vlso ¼ ð�MflsoÞ1=3, with flso the last stable orbit
frequency for a test mass in a Scharzschild space-time of
mass M:

flso ¼ ð63=2�MÞ�1 (4.4)

which will be also used as the upper cutoff for the integrals
(3.11), (3.12), (3.13), (3.14), (3.15), (3.16), (3.17), and
(3.18).
Given the waveform (4.2), one can easily calculate the

Fisher information matrix, and its inverse, the CRLB.
Equation (4.2) contains five unknown parameters,
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ðA; t; �;M; �Þ (the total massM could be used instead of
the chirp mass), so that one should calculate a five dimen-
sional square matrix.

It was already observed by [13] that the errors in the
distance, and consequently the amplitude A, are uncorre-
lated with the errors in other parameters, i.e. that the Fisher
information is block diagonal. We observed that this is also
the case for the waveform (4.2) we use here for both the
FIM and the second-order covariance matrix. We can
therefore work in a four-dimensional parameter space
ðt; �;M; �Þ. However, it is worth observing that this is
not an obvious point since in general the amplitude esti-
mation can be coupled with other parameters if they enter
in the signal in specific ways (see Ch. 3 of [5]).

For the analysis of this paper, the SNR and the amplitude
A are related like follows:

�2 � hhðfÞ; hðfÞi ¼ 4A2
Z fcut

flow

df
f�ð7=3Þ

ShðfÞ : (4.5)

We perform the calculations using analytical forms of
the design initial and advanced LIGO noise spectrum (4.6).
The initial one-sided power spectral density of LIGO can
be written for f � flow (ShðfÞ ¼ 1, f � flow):

ShðfÞÞ ¼ S0½ð4:49xÞ�56 þ 0:16x�4:52 þ 0:52þ 0:32x2�;
(4.6)

where the lower frequency cutoff value is flow ¼ 40 Hz,

x � f
f0
, f0 ¼ 500 Hz, and S0 ¼ 9� 10�46 Hz�1.

The Advanced LIGO one sided psd has the following
expression, for f � flow (ShðfÞ ¼ 1, f � flow):

ShðfÞ ¼ S0

�
x�4:14 � 5x�2 þ 111

1� x2 þ x4=2

1þ x2=2

�
; (4.7)

where the lower frequency cutoff value is flow ¼ 20 Hz,

x � f
f0
, f0 ¼ 215 Hz, and S0 ¼ 10�49 Hz�1. They are

plotted in Fig. 1.

We now calculate the second-order covariance for the
full four-dimensional parameter space ðt; �;M; �Þ.
To compare our results with the literature more easily,

we study a binary neutron star system (NS-NS), a neutron
star—black hole system (NS-BH), and a black hole system
(BH-BH). A neutron star is assumed to have a mass of
1:4M� and a black hole of 10M�.
We performed our calculations following these steps:

(I) We give to the total mass M and the mass ratio � a
numerical value depending on the binary system we con-
sider. This makes the upper cutoff (4.4) to have a numerical
value. (II) We compute analytically the derivatives of the
wave function hðfÞ and use it to compute the Fisher
information (3.10) and his inverse, the CRLB. (III) We
calculate the v’s functions (3.12), (3.13), (3.14), (3.15),
(3.16), (3.17), and (3.18) and use them to compute the
second-order covariance (3.19). (IV) We plot for the four
parameters the CRLB, the second-order variance and the
total error (without bias, see end of Sec. V).

V. ONE-DIMENSIONAL PARAMETER SPACE

In this section we describe the results for the instance
where only one of the parameters (we call it �) is consid-
ered unknown, while the others have known values. It can
be shown that in this case the second-order variance (3.19)
can be written as

C2ð�Þ ¼ ði��Þ3ð8i��hh��; h�i2 � hh���; h�iÞ (5.1)

Let us consider the case where � is the arrival time t in
the waveform (4.2). The ratio between the second order and
the first order variance turns out to be

C2ðtÞ
�2

t

¼ 1

4�2

K4

K0

ðK2

K0
Þ2 (5.2)

where K	 � R
df f	

ShðfÞ jhðfÞj2 is the 	th moment of the

signal’s frequency spectrum. The second order is negli-
gible with respect to the first if

�2 	
K4

K0

ðK2

K0
Þ2 ; (5.3)

that is, if the SNR is much larger than the Kurtosis of the
signal’s spectrum. This means that for two signals with the
same bandwidth, the one with a more peaked spectrum
requires higher SNR to attain the CRLB. It must be noted
that the K	 are functions of the total mass via the upper
limit of the integral [see (4.4)]. This kind of observation
was also introduced in [22] for an arrival-time matched-
filter estimate from data disturbed by additive white noise.
It can be shown that for a BH-BH (NS-NS) system the

second order becomes equal to the first for � ¼ 1:32 (� ¼
1:97). These values of SNR are smaller than those we will
derive with the full parameters space. This indicates that it
is much harder to estimate all the parameters at the same

FIG. 1. The Initial (dashed line) and Advanced (solid line)
LIGO noise spectrum.
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time. Also notice that if someone requires the second order
to be much smaller than the first, for example, 10%, the
conditions become more stringent.

A similar calculation can be done when one of the other
parameters is considered as unknown. For M and � the
same analysis does not give a result that is equally compact
and we only show a plot of the ratio between the second
order and the first order variance, for a fixed value of SNR,
� ¼ 10; These values, are presented in Fig. 2, for different
values of � and M and 1 PN waveforms. When � is the
unknown parameter (upper plot), the ratio becomes smaller
when the total mass of the system increases. This is in
agreement with the Monte Carlo simulations (see e.g. [18],
and Sec. 8.3) performed in the full four parameter space.
The necessary SNR is not very sensitive to the value of �.
Similar considerations can be drawn when the total massM
is the unknown parameter (bottom plot), except that now
the necessary SNR seems to be slightly more sensitive to
the value of �. In both panels of Fig. 2, the second order is
always about 30% of the first order. If one works with a
one-dimensional parameter space more compact expres-
sions can also be given for the first and second-order bias,

Eqs. (2.2) and (2.3):

b½1� ¼ �1
2ði��Þ2hh��; h�i (5.4)

b½2� ¼ �ði��Þ3ð18hh����; h�i þ 5
4hh���; h��i � 3

2hh���; h�i
� i��hh���; h�ihh��; h�i � 9

2i
��hh��; h��ihh��; h�i

þ 9
8ði��Þ2hh��; h�i3Þ (5.5)

We observed that the first two orders of the bias are, for
all of the examples in this paper, few order of magnitude
smaller than the variance contributions. Therefore, we do
not include them in the presented results. Ongoing research
on waveforms including the merger and ringdown phases
show that the bias can also become important for systems
with masses beyond the range considered here.

VI. FULL PARAMETER SPACE

We present results for the full parameter space beginning
with the examples obtained using the initial LIGO noise
(4.6), see Figs. 3–5 and then show the same results for the
advanced LIGO noise (4.7), see Figs. 6–8. In each plot we
show three curves as a function of the SNR. The dotted one
is the CRLB (square root of the diagonal elements of the
inverse of the FIM). The dashed one is the square root of
the corresponding diagonal elements in the second-order
covariance matrix, and the continuous one is the square
root of the sum of the diagonal elements of the of the FIM
and of the second-order covariance matrix. For all the cases
analyzed in this paper, the bias resulted in a negligible
contribution and, as a result, is not included in the plots.
For the bottom two of the four plots panels, the curves

are divided by the actual value of the parameter in order to
express the relative uncertainty. The general trend is that
the CRLB fails to describe correctly the error for SNRs
lower than 20. For the t and the M, this regime is of
physical interest while for the symmetrized mass ratio
and the phase the CRLB already predicts very large un-
certainties. It is also worth noticing that the SNR at which
the second-order covariance matrix contribution becomes
comparable to the CRLB is much larger when the full
parameter space is involved. For t for example in the NS-
NS case the two are the same at � ¼ 2 while for the full
parameter space they equate around � ¼ 15, see the first
panel of Fig. 3. These results appear to indicate that also the
timing based directional reconstruction accuracy is worse
when the other physical parameters of the waveform are
unknown.
It is interesting to compare our results with Monte Carlo

simulations for 3.5 PN waveforms, [18].
In Fig. 9 we reproduce the plots of [18] obtained for a

NS-NS system (first panel from top) and for a low mass
BH-BH system—10M�— (third panel from top) when the
initial LIGO noise is used.

FIG. 2 (color online). The ratio C2ð�Þ=i�� (top) and
C2ðMÞ=iMM (bottom).
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The results we obtain for the same systems are shown in
the second and fourth panels from the top of Fig. 9, where
the CRLB and the square root of the sum of the inverse
FIM and the second-order covariance are plotted. The plots

show that the use of the second-order covariance predicts
correctly the SNR regimewhere the CRLB fails to describe
the MLE accuracy. The explicit percentage discrepancies

FIG. 4. NS-BH signal in initial LIGO noise. The dotted line is
the CRLB. The dashed line is the square root of the second-order
covariance matrix, and the continuous line is the square root of
the sum of the diagonal elements of the FIM and of the second-
order covariance matrix. In the last two panels the errors are
divided by the value of the parameter.

FIG. 3. NS-NS signal in initial LIGO noise. The dotted line is
the CRLB. The dashed line is the square root of the second-order
covariance matrix, and the continuous line is the square root of
the sum of the diagonal elements of the FIM and of the second-
order covariance matrix. In the last two panels the errors are
divided by the value of the parameter.
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presented for SNR equal to 20, 10, and 6 in Table I seem to
indicate that higher orders of the expansions might be
necessary to fully reproduce the error derived with the
Monte Carlo simulations.

VII. CONCLUSIONS

In this paper we applied a recently derived statistical
methodology to gravitational waves generated by the in-

FIG. 5. BH-BH signal in initial LIGO noise. The dotted line is
the CRLB. The dashed line is the square root of the second-order
covariance matrix, and the continuous line is the square root of
the sum of the diagonal elements of the FIM and of the second-
order covariance matrix. In the last two panels the errors are
divided by the value of the parameter.

FIG. 6. NS-NS signal with Advanced LIGO noise. The dotted
line is the CRLB. The dashed line is the square root of the
second-order covariance matrix, and the continuous line is the
square root of the sum of the diagonal elements of the FIM and
of the second-order covariance matrix. In the last two panels the
errors are divided by the value of the parameter.
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spiral phase of binary mergers and for noise spectral den-
sities of gravitational wave interferometers. Explicitly, we
computed the first two orders of MLE expansions of bias
and covariance matrix to evaluate MLE uncertainties. We

also compared the improved error estimate with existing
numerical estimates. The value of the second order of the
variance expansions allows us to get error predictions
closer to what is observed in numerical simulations than

FIG. 7. NS-BH signal with advanced LIGO noise. The dotted
line is the CRLB. The dashed line is the square root of the
second-order covariance matrix, and the continuous line is the
square root of the sum of the diagonal elements of the FIM and
of the second-order covariance matrix. In the last two panels the
errors are divided by the value of the parameter.

FIG. 8. BH-BH signal with advanced LIGO noise. The dotted
line is the CRLB. The dashed line is the square root of the
second-order covariance matrix, and the continuous line is the
square root of the sum of the diagonal elements of the FIM and
of the second-order covariance matrix. In the last two panels the
errors are divided by the value of the parameter.
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the inverse of the FIM. The condition where the second-
order covariance is negligible with respect to the first order
predicts correctly the necessary SNR to approximate the

error with the CRLB and provides new insight on the
relationship between waveform properties SNRs and esti-
mation errors. Future applications include IMR wave-
forms, a network of detectors, and source location
estimation.
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APPENDIX A: DERIVATION OF THE EXPANSIONS

Analytic expressions for the moments of a MLE are
often difficult to obtain given a nonlinear data model.
However, it is known from [21] that likelihood expansions
can be used to obtain approximate expressions for the
moments of a MLE in terms of series expansions in inverse
powers of the sample size (n). These expansions are valid
in small samples or SNR where the MLE may have sig-
nificant bias and may not attain minimum variance.
An expression for the second covariance equivalent to

the one used here was first given in a longer form (about a
factor 2), and with the prescription of isolating the different
asymptotic orders inside the tensors, in [22]. The expres-
sions presented here were first derived in an unpublished
MIT technical report [30] by two of the authors of this
paper, where (a) the Bartlett identities [31,23] were used to
simplify the expression of the second-order variance, and
derive the second-order bias. (b) the prescription on the
tensors no longer needed to be implemented. The final
form of the second-order covariance has already been
published without proof, in two papers [24,32], where the
first and third author of this paper are coauthors, involving
MLE of source and environment parameters that use
acoustic propagation within a shallow water ocean wave
guide.
In this section, we derive the second-order bias for a

multivariate MLE and we introduce a chain rule that allows

FIG. 9. The simulations of T. Cokelaer (first and thrid panel
from top), compared with our result (see the text for a discus-
sion).

TABLE I. The discrepancies between the CRLB error predic-
tion and Monte Carlo simulations are presented above the
discrepancies observed using the first and second-order covari-
ance matrix. The discrepancies are presented for three values of
the SNR: 20, 10, and 6.

NS-NS SNR 20 10 6

Cokelaer 25% 200% 700%

Z.V.M. 8.6% 131% 174%

BH-BH SNR 20 10 6

Cokelaer 10% 150% 230%

Z.V.M. 2.9% 111% 129%
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the derivation of the second-order covariance matrix from
the second-order bias. The explanation follows closely
[30]. The derivation of the bias is performed in two steps:
first we derive the expansions in the nonphysical scenario
of n statistically independent identical measurements and
then set n ¼ 1 for the case of interest of this paper.

The derivation follows the approach of [26] for like-
lihood expansions, [33] for the large sample approxima-
tions and [34,35] for the notation of the observed
likelihood expansions. For the small sample case of inter-
est, asymptotic orders generated from the likelihood ex-
pansion may contain different powers of 1

n , and the

contributions to a single power of 1
n may have to be col-

lected from different asymptotic orders. The authors of
[36] extending the work of [21], confronted the equivalent
problem of separating the powers in n within the expecta-
tions of products of linear forms and arrived at expressions
for the second-order bias of the MLE by embedding the
derivation in a discrete probability scheme. Some applica-
tions of their results are given in [37–41]. We present here
an independent derivation for the second-order bias that is
valid for general discrete or continuous random variables.
Let us consider a set of n independent and identically
distributed experimental data vectors xi ¼ fxi1; . . . ; xiNg,
where N is the dimension of every vector. We assume
that these data are described by a probability density
Pðx; #Þ ¼ �ipðxi; #Þ that depends on a D-dimensional
parameter vector # ¼ f#1; . . . ; #Dg. According to [26],

we suppose that the MLE #̂ ¼ f#̂1; . . . ; #̂Dg of # is given
by a stationary point of the likelihood function lðx; #Þ ¼
lnðPðx; #ÞÞ ¼ P

n
i¼1 lnðpðxi; #ÞÞ with respect to the compo-

nents of #

lrðx; #̂Þ ¼ @lðx; #Þ
@#r

��������#¼#̂
¼ 0r ¼ 1; . . . ; D: (A1)

The first step in deriving the likelihood expansion, if

lrðx; #̂Þ can be expanded as a Taylor series in the compo-

nents of the observed error #̂ � #, consists of writing

lrðx; #̂Þ as
0 ¼ lrðx; #̂Þ ¼ lrðx; ð#̂ � #Þ þ #Þ
¼ lrðx; #Þ þ lrsðx; #Þð#̂ � #Þs

þ 1
2lrtuðx; #Þð#̂ � #Þtð#̂ � #Þu þ . . . ; (A2)

where ð#̂ � #Þr for r ¼ 1; . . . ; D are the components of
the observed error. We will use the notation

�fa1a2...asg...fb1b2...bsg ¼ E½Ha1a2...as . . .Hb1b2...bs�;
where Ha1a2...as ¼ la1a2...as � �a1a2...as and ��ab is the in-

formation matrix iab ¼ ��ab ¼ �E½lab� ¼ E½lalb�.
Introducing jab as the inverse of the matrix whose elements
are given by jab ¼ �lab, Eq. (A2) can be rearranged to

solve for ð#̂r � #rÞ ¼ ð#̂ � #Þr

ð#̂ � #Þr ¼ jrsls þ 1
2j

rslstuð#̂ � #Þtð#̂ � #Þu
þ 1

6j
rslstuvð#̂ � #Þtð#̂ � #Þuð#̂ � #Þv

þ 1
24j

rslstuvwð#̂ � #Þtð#̂ � #Þuð#̂ � #Þv
� ð#̂ � #Þw þ . . . : (A3)

Finally we can iterate Eq. (A3) with respect to the compo-
nents of the observed error and expand jab in terms of the
information matrix inverse iab ¼ ði�1Þab ([42], page 149)

½j�1�ab ¼ jab ¼ ½ð1� i�1ði� jÞÞ�1i�1�ab
¼ iab þ iatibuHtu þ iatibuivwHtvHuw

þ iatibuivwicdHtvHwcHdu þ . . . : (A4)

From (A3) and (A4) the terms that contribute to each
asymptotic order of the observed error can be obtained.
However, in order to isolate the asymptotic orders neces-
sary to compute the second-order bias we have chosen only
a finite number of terms within Eqs. (A3) and (A4). This
choice can be made by ðaÞ observing that �a1a2...as is

proportional to n

�a1a2...as ¼ E½la1a2...as� ¼ nE

�
@slnðpðxi; #ÞÞ

@#a1@#a2 . . . @#as

�
; (A5)

where the value of i is irrelevant because all the vector data
have the same distribution, and ðbÞ using the large sample
approximation expressed by ([33], page 221)

Ha1a2...as ¼ la1a2...as � E½la1a2...as� 
 n1=2; (A6)

and proved for discrete and continuous random variables in
the next paragraph.
Equation (A6) indicates that the expectation of a product

of c generic factors Ha1a2...as is a polynomial of integer

powers of n, where the highest power of n is the largest
integer less than or equal to c

2 (we use the notation intðc2Þ).
For example, �fa1a2...asgfb1b2...bpgfc1c2...cqg is proportional to n.

The proof of the large sample approximation (A6) is an
extension to continuous random variables of the analysis
performed in ([43], page 36), for discrete random varia-
bles. To prove Eq. (A6) we show that the quantities

PmðnÞ ¼ E½H	1
H	2

. . .H	m
� (A7)

obtained as the expectation of products of m functions
H	j

¼ P
n
i¼1 hi;	j

are polynomials in integer powers of n

of order less than or equal to m
2 . Here, hi;	j

¼ li;	j
� hli;	j

i.
The subscripts 	i that appear in H	i

represent collections

of indexes as introduced in Eq. (A6).
The factorsH	1

H	2
. . .H	m

appearing in the expectation

can be seen as the first m terms of a succession H	i
, where

we choose arbitraryH	i
for i > m. Using such a succession

we can define the quantity
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FðyÞ ¼ X1
s¼0

ysPsðnÞ

¼ X1
s¼0

ysE

��Xn
j1¼1

hj1;	1

�
. . .

�Xn
js¼1

hjs;	s

��
;

where we assume that all the expectations exist.
Moving all the sums outside of the expectations and

redefining the notation in the sums, we can obtain

FðyÞ ¼ X1
s¼0

ys
Xap;	q¼0;1

a1;	1þ...þan;	1þ...þa1;	sþ...þan;	s¼s

� E½h1;	1

a1;	1 . . . hn;	1

an;	1 . . . h1;	s

a1;	s . . . hn;	s

an;	s �;
(A8)

where the quantity ap;	q
can be equal to 0 or to 1 to indicate

that the quantity hp;	q
is present or not in the product inside

the expectation. The summation over all ai;	j
is intended to

account for all possible configurations of the indexes
(choosing some equal to zero and the others equal to
one) with the constraint that the number of factors within
the expectation is equal to s. We can now group together
terms ðhi;	j

Þai;	j for different i and define
P

s
j¼1 ai;	j

¼ si,

where
P

n
i¼1 si ¼ s. In this manner we can also factorize the

expectations in (A8) as expectations for different data
vectors. By making use of the statistical independence of
the different data vectors, and defining
�ðai;	j1

; . . . ; ai;	jp
Þ ¼ E½hi;	j1

. . . hi;	jp
�, (A8) can be re-

written as follows:

FðyÞ¼X1
s¼0

ys
Xs
s1¼0

X
a1;	1þ...þa1;	s¼s1

�ða1;	1
; . . . ;a1;	s

Þ

� Xs�s1

s2¼0

X
a2;	1þ...þa2;	s¼s2

�ða2;	1
; . . . ;a2;	s

Þ . . .

� X
sn¼s�s1�s2�...�sn�1

X
an;	1þ...þan;	s¼sn

�ðan;	1
; . . . ;an;	s

Þ

¼
�X1
s1¼0

ys1
XP

s
j¼1

a1;	j¼s1

�ða1;	1
; . . . ;a1;	s

Þ
�
. . .

�
�X1
sn¼0

ysn
XP

s
j¼1

an;	j¼sn

�ðan;	1
; . . . ;an;	s

Þ
�

¼
�X1
s¼0

ys
XP

s
j¼1

a1;	j¼s1

�ða1;	1
; . . . ;a1;	s

Þ
�
n
: (A9)

We observe that, when the expectations contain only one
factor, for s1 ¼ 1, we have E½h1;	1

a1;	1h1;	2

a1;	2 . . .� ¼
E½h1;	j

� ¼ �ða1;ajÞ ¼ 0 for any j. As a consequence, the

Taylor expansion of fðyÞ in y can be written as fðyÞ ¼

c0 þ c2y
2 þ c3y

3 þ . . . . Eventually, it is the absence of
c1y in this expansion that allows us to explain the proper-
ties of the polynomials in Eq. (A7) and finally the large
sample approximation (A6). To accomplish this last step,
we explain how the polynomials PmðnÞ are related to the
coefficients ci. Let us consider the contribution to PmðnÞ
that originates from the product of k factors
ci1y

i1 ; . . . ; ciky
ik with the constraints il � 1 and i1 þ . . .þ

ik ¼ m. The number of ways these products can be formed

for an assigned set of i1; . . . ; ik is proportional to ðn
k
Þ ’

nk þ lower powers in n. Moreover, the contributions to
PmðnÞ are formed by an integer number of factors less
than or equal to m

2 because c1 ¼ 0. This property limits

the highest power in n contained in PmðnÞ with the largest
integer number smaller than or equal to m

2 . Equation (A7) is

then proved as is the large sample approximation (A6).
Each asymptotic order m of the rth component of the

observed error is denoted by ð#̂ � #Þr½m�, where the index
is given by m ¼ sþ1

2 and s is a natural number. For ex-

ample, the asymptotic order for m ¼ 1 is given by

ð#̂ � #Þr½1� ¼ 1
2�

rstlslt þ irsituHstlu; (A10)

where we have adopted the lifted indexes notation �a...z ¼
ia	 . . . iz��	...�. The asymptotic orders of the bias are then
given as the expectation of the asymptotic orders of the
observed error

~b½#̂r; m� ¼ E½ð#̂ � #Þr½m��: (A11)

The asymptotic order ~b½#̂r; m� contains different powers of
1
n as we discuss in this paragraph. It follows from Eqs. (A3)

–(A6) that ~b½#̂r; m� is the sum of terms having the structure

ið:Þ . . . ið:Þ|fflfflfflffl{zfflfflfflffl}
a

�ð:Þ . . .�ð:Þ|fflfflfflfflffl{zfflfflfflfflffl}
b

E½Hð:Þ . . .Hð:Þ�|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
c

where a, b, and c are the

numbers of factors in the three products satisfying a� b�
c
2 ¼ m. Different powers of 1

n can be generated because

E½Hð:Þ . . .Hð:Þ�|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
c

can contain all the integer powers of n equal

to or less than nintðc=2Þ. However, from the fact that no

power higher than nintðc=2Þ can be generated follows that
an asymptotic order m will never generate powers in the
sample size 1

np with p smaller than m. It still remains to

prove which is the largest power in 1
n contained in the

asymptotic order m. We show that in the following.
Since the largest range of powers of 1

n is allowed when

b ¼ 0, we study these terms to evaluate the range of

powers of 1
n contained in ~b½#̂r; m�. The structure of

Eq. (A3) implies that its iteration with respect to the
observed error components generates an equal number of
jab and Hð:Þ (we recall that lð:Þ ¼ Hð:Þ þ �ð:Þ). Similarly, the

number of ið:Þ generated from the expansion of jab given in
Eq. (A4) is equal to the number of Hab plus 1. These two
observations imply that the terms where b ¼ 0 also verify
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a ¼ c ¼ 2m. As a consequence, the powers of 1
n that

~b½#̂r; m� contains can range from the smallest integer
number larger than or equal to m, up to 2m� 1. The
analysis above implies that in order to compute the con-
tributions to 1

n and to
1
n2
in the bias expansion that we denote

with b½#̂r; 1� and b½#̂r; 2�, it is necessary to obtain the first
three asymptotic orders of the bias, ~b½#̂r; 1�, ~b½#̂r; 32�, and
~b½#̂r; 2�. In the explicit expressions below, to condense the
notation, we introduce the quantities I	;...;
� ¼ i	 . . . i
�,
so that

~b½#̂r; 1� ¼ Iri;kl�ik;l þ 1
2I

rj;lp�jlp (A12)

~b½#̂r; 32� ¼ 1
6ðIr	;s;t
;u��	
�

þ 3Ir	;s;
�;tg;uv�	
��;g;v�s;t;u

þ Ir	;s;u
;tv�	
�uv;s;t

þ 1
2I

rs;t	;u;v
�	
�st;u;v þ 1
2I

rs;tu;vw�stv;u;w

þ Irs;tu;vw�st;vu;w þ 2Irs;tw�st;w þ Ir	;
�	
;

(A13)

~b½#̂r; 2� ¼ ðIra;bq;cd;tp þ 1
2I

rd;ta;bq;cpÞ�fabcgfdtgfqgfpg

þ 1
2ðIra;bs�cpq þ Ibp;cq�rsaÞ�fabcgfsgfpgfqg

þ ð12Iap;tq�rbg þ Ira;tq�bpg þ 1
2I

ra;bg�tpq

þ Ibg;tq�rpaÞ�fabgfgtgfpgfqg þ 1
2½�rsz�pqt

þ �rzqsitp þ 1
3�

pzqtirs þ ðIdz;eq;pt�rcs

þ Irp;dz;et�sqc þ 2Idq;es;pt�rzcÞ�cde��fspgfzgfqgftg

þ Ira;st;bc;de�fabgfcdgfetgfsg
þ 1

6I
rj;kl;mp;qz�fjlpzgfkgfmgfqg þ ½ 124�r	
�

þ 1
6�

r	aIb;g�;
d�abgd þ 1
4�

ra
�Ic;b	�abc

þ 1
8�

rvaIw	;z;b
;g��vwz�abg

þ 1
2�

r	viw�vwz�
z
���f	gfgf
gf�g:

(A14)

The first order of the bias b½#̂r; 1� can then be obtained by
substituting the explicit expressions for the tensors in
~b½#̂r; 1�. The second order b½#̂r; 2� takes contributions

from ~b½#̂r; 32� and ~b½#̂r; 2�. However, while ~b½#̂r; 32� gen-
erates only n�2 contributions, ~b½#̂r; 2� generates n�2 and
n�3 contributions. Consequently, to collect all and only the
contributions to n�2, it is necessary to extract the n�2

component from ~b½#̂r; 2� and add it to ~b½#̂r; 32�. The ex-

traction can be done by introducing into ~b½#̂r; 2� only the
highest powers of n of the tensors.

The first two orders of the bias for the MLE of the r
component of the parameter vector # then become (2.2)
and (2.3).

Starting from (2.3), the form for the second-order co-
variance matrix can be obtained using the following
theorem:
Theorem: Let gð:Þ be an invertible and differentiable

function and let � ¼ gð#Þ be a set of parameters dependent

on #. Let bð#̂rÞ and bð�̂rÞ be the biases relative to the
estimation of the components of # and �, which can be

computed as power series of 1
n , as explained in Sec. II. The

terms of the expansion in powers of 1
n for bð�̂rÞ can be

obtained from the terms of the expansion for bð#̂rÞ by
replacing the derivatives with respect to the components
of #,with derivatives with respect to the components of �.

The explicit dependence on � can be removed at the end of

a derivation by means of the Jacobian matrix J defined by
@

@�m
¼ @#s

@�m
@

@#s
¼ Jms

@
@#s

.

To prove the chain-rule theorem given in Sec. II, we
analyze how the derivation of the expansion in powers of 1

n

for bð#rÞr ¼ 1; . . . ; D, which is described there, changes if
we are interested in the expansion for bð�rÞr ¼ 1; . . . ; D,
where � is a vector of parameters in an invertible relation-

ship with #: � ¼ fð#Þ; # ¼ f�1ð�Þ. The starting point for
the derivation of the expansion of bð�rÞr ¼ 1; . . . ; D is the
stationarity condition

lrðx; �̂Þ ¼
@lðx; f�1ð�ÞÞ

@�r

���������¼�̂
¼ 0 r ¼ 1; . . . ; D:

(A15)

that can be obtained from Eq. (A1) by replacing only the
derivatives @

@#r
for r ¼ 1; . . . ; D with @

@�r
for r ¼ 1; . . . ; D,

because # ¼ #̂ implies � ¼ fð#̂Þ ¼ �̂. The subsequent

steps can then be obtained from Eqs. (A2) up to (2.3) by

replacing the derivatives in the same way. Since @
@�m

¼
@#s

@�m
@

@#s
¼ Jms

@
@#s

, where the components of the Jacobian

matrix Jms behave like constants in the expectations, the
substitution of the derivatives can also be done only in the
final result [for example, in the orders given in Eqs. (A14)
and (2.3)]. The expectations contained in the expansion of
bð#rÞ in powers of 1

n can also be computed before the

substitution of the derivatives if the likelihood function
dependence on the parameters is expressed in terms of
auxiliary functions. Examples of auxiliary functions are
grð#Þ ¼ #r for a general parametric dependence and
g1ð#Þ ¼ �ð#Þ g2ð#Þ ¼ �ð#Þ for a scalar Gaussian distri-
bution. By means of these auxiliary functions, the deriva-

tives @
@#m

and @
@�m

become
@gp
@#m

@
@gp

and
@gp
@�m

@
@gp

. As a

consequence the orders of the expansion for bð�rÞ can be
found from the orders for the expansion of bð#rÞ imple-
menting, in the result of the expectations, the substitutions

@i1þi2þ...þipgmð#Þ
ð@#1Þi1 . . . ð@#DÞiD

! @i1þi2þ...þiDgmðf�1ð�ÞÞ
ð@�1Þi1 . . . ð@�DÞip : (A16)
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The converse of the chain rule, in which higher moments of
the observed error are used to compute lower moments, is
not possible. We can observe, for example, that the expan-
sion of a general moment of a MLE does not always
contain all the powers of 1

n . The lowest order present in

the expansion of them order moment is given by the largest
integer number smaller than or equal to m

2 [we use the

notation intðm2Þ]:
E½ð#̂ � #Þi1 . . . ð#̂ � #Þim� ¼ 1

nintðm=2Þ

þ higher powers of
1

n
:

The consequence of this observation is that only the bias
and the error correlation matrix may contain first order
terms. For this reason an inverse chain rule would have to
generate nonzero orders of lower moments expansions
from the corresponding orders of the higher moments
expansions that are zero for powers of 1

n lower than
1

nintðm=2Þ .

Let us consider how the chain rule makes it possible to
compute the expansion of the error correlation matrix

�ð#̂Þ defined by �ð#̂Þ ¼ E½ð#̂ � #Þð#̂ � #ÞT� and the
covariance matrix. Using the invariance property of the
MLE,

�ð#̂Þ ¼ bðd# #
TÞ � #ðbð#̂ÞÞT � bð#̂Þ#T; (A17)

where ð:ÞT is the transpose of a vector and bð d##TÞ is a
matrix whose components are the bias of the product of

two components of #. Once �ð#̂Þ and the bias are known,
then the covariance matrix Cð#̂Þ can also be computed by
means of

Cð#̂Þ ¼ �ð#̂Þ � bð#̂Þbð#̂ÞT: (A18)

To compute the right-hand side of Eq. (A17), we express it
in terms of the components, obtaining

�ijð#̂Þ ¼ bð d#i#jÞ � #ibð#̂jÞ � bð#̂iÞ#j: (A19)

It is important to realize that knowledge of bð#̂rÞ is suffi-
cient because the expansion of bð d#i#jÞ can be derived from
it by means of the theorem given above. In fact, if we
choose

� ¼ f#1; . . . ; #i�1; #i#j; #iþ1; . . . ; #Dg (A20)

as a new set of parameters, bð d#i#jÞ becomes bð�̂iÞ.
However, it is necessary to insure that the relationship
between # and � is invertible. This condition holds if

both #i � 0, where i ¼ 1; . . . ; D and the sign of the com-
ponents of # is known, for example, by means of con-
straints on the data model. In a scalar estimation scenario,
Eq. (A17) becomes simply

�ð#̂Þ ¼ E½ð#̂ � #Þ2� ¼ bð#̂2Þ � 2#bð#̂Þ (A21)

and the variance Cð#̂Þ ¼ �ð#̂Þ � bð#̂Þ2. In this case bð#̂2Þ

can be derived from bð#̂Þ if we choose � ¼ #2 as the new
parameter and the Jacobian matrix becomes 1

2# because
@
@� ¼ @#

@�
@
@# ¼ 1

2#
@
@# . A useful simplification of the algebra

of the chain rule in the derivation of second-order moments
is described in the following two paragraphs. The chain-
rule and the subsequent conversion of the derivatives re-
quire the substitutions

@m½:�
@#i1 . . . @#im

! @m½:�
@�i1 . . . @�im

! Ji1j1ð#Þ
@

@#j1

Ji2j2ð#Þ
@

@#j2

. . .

� Jimjmð#Þ
@

@#jm

½:� (A22)

From the right-hand side of (A22) it is clear that the
derivatives will also be applied to the Jacobian matrix,
thereby generating m! terms for every derivative of order
m. However, it can be observed that the terms contributing
to the final result are only a small subset. In fact, among
all the terms generated from the conversion of the
derivatives in the bias expansion, only those where a first
derivative of the Jacobian matrix appears must be consid-
ered. For example, we can consider the term
1
2 I

ra;sb;vc�abc�v;wI
wd;te;uf�def�s;t;u that comes from Eq.

(2.3), which must be used to derive the second-order

�ð#̂Þ. In this case, we need to consider only the 3 terms
in which one of the derivatives represented by a, b, c
operates on a Jacobian matrix and d, e, f operate on the
likelihood function, plus the 3 terms where the role of a, b,
c and d, e, f are inverted. In general, the total number of
relevant terms among those generated in every derivative is
equal to or less than the order of the derivative m. The
detailed analysis of Eq. (A19) reveals that the terms gen-

erated in biasð d#i#jÞ can be divided into three groups:

(a) the terms where no derivative of the Jacobian matrix

appears are equal to ððJ�1ÞTÞisbiasð#̂sÞ [we show in

Example 1 that ððJ�1ÞTÞisbiasð#̂sÞ cancels with

�#ibð#̂jÞ � bð#̂iÞ#j after its introduction in Eq. (A19)];

(b) the terms where only one derivative of the Jacobian
matrix appears give the error correlation matrix; and (c) the
terms that contain higher derivatives of the Jacobian matrix
or more than one first derivative of the Jacobian matrix in
the same term, summed together, give zero. To clarify the
use of the chain-rule and the algebraic issues discussed
above, we present two examples. In Example 1 we use the
first order term of the bias in a general vector estimate to

derive the first order term of�ð#̂Þ. It is useful to recall that
the expansion of �ð#̂Þ and the expansion of Cð#̂Þ can be
different only from the second order on, so this example
also describes a derivation of the first order of the covari-

ance matrix Cð#̂Þ. Following the same approach, the
second-order term of the error correlation matrix expan-
sion can be derived from Eq. (2.3) and the second-order
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covariance matrix can also be derived if we also use (2.2)
and (A18). In Example 2 we illustrate the way the chain
rule can still be used, if the available expression of the bias
expansion is explicitly computed for a particular data
model. In particular, we derive the second-order mean
square error and the second-order variance from the
second-order bias in two scalar Gaussian models. In
Example 2 we also illustrate the simplification introduced
above for the algebra involved in the conversion of the
derivatives.

Example 1
Using the Bartlett identities [31,23], we rewrite the first

order bias, given by Eq. (A12), as

b½#̂r; 1� ¼ �1
2i
rjilpð�j;l;p þ �j;lpÞ: (A23)

From Eq. (A23), bð d#i#jÞ ¼ bð�iÞ can be computed by

means of the chain rule by replacing the derivatives with
respect to the components of # with derivatives with
respect to the components of �, where � is given in

Eq. (A20) and using the corresponding Jacobian matrix.
The tensors in Eq. (A23) become

ilpð�Þ ¼ E

�
@2l

@�l@�p

�
¼ Jlrirsð#ÞðJTÞsp

¼ JlrE

�
@2l

@#i@#j

�
ðJTÞspilp;

ð�Þ ¼ ððJ�1ÞTÞlrirsð#ÞðJ�1Þsp�j;l;p;

ð�Þ ¼ Jj	JlJp
�	;;
ð#Þ�j;lp;

ð�Þ ¼ Jj	Jl

�
Jp
�	;;
ð#Þ þ

@Jp

@

�	;
ð#Þ
�
;

where we have specified in the bracket beside the tensors
the dependence on the parameter sets. Inserting these ex-
pressions in Eqs. (A23) and observing that Eq. (A19) can
be expressed in the form

�ð#̂Þij ¼ bð d#i#jÞ � ððJ�1ÞTÞisbð#̂sÞ (A24)

the first order term of the error correlation matrix can then
be obtained as

�ij½#̂; 1� ¼ 1

2
i	

@ðJ�1Þ	i
@#

¼ 1

2
i	
	 ¼ iij; (A25)

where we have introduced the tensor


	 ¼
�
1 if 	 ¼ i ¼ j or 	 ¼ j ¼ i
0 otherwise:

Example 2
In this example we determine the second-order variance

and mean square error from the second-order bias for two
cases of parameter dependence for the scalar Gaussian
density

pðx; #Þ ¼ 1

ð2�cÞn=2 exp

�
� 1

2

Xn
i¼1

ðxi ��Þ2
c

�
(A26)

as a direct application of Eq. (A21). In the case where c
does not depend on the parameters ( @c

@# ¼ 0) the second-

order bias can be derived using the scalar version of
Eq. (2.3) and of the tensors � defined in Eq. (A5). For
this parameter dependence, the asymptotic order for m ¼ 3

2

[Eq. (A13)] is zero, and the second-order bias can be

directly obtained also from Eq. (A14). The result is b½ 1
n2
� ¼

c2

ð _�Þ8 ½54�
:::

€�ð _�Þ2 � 1
8�
::::ð _�Þ3 � 15

8 _�ð €�Þ3�. Applying the

chain-rule, the second-order mean square error for the

estimation of # becomes �ð#Þ½ 1
n2
� ¼ 15 €�2

4 _�6 � �
:::

_�5 , where

the full conversions of the derivatives are given by _� !
@�
@#2 ¼ _�

2# ; €� ! @2�
ð@#2Þ2 ¼ 1

2# ð €�
2# � _�

2#2Þ; �
::: ! @3�

ð@#2Þ3 ¼ 1
2# �

ð �
:::

4#2 � 3 €�
4#3 þ 3 _�

4#4Þ; �
::::! @4�

ð@#2Þ4 ¼ �
::::

16#4 � 3�
:::

8#5 þ 15 €�
16#6 � 15 _�

16#7 .

By means of these conversions and the expression of the
second-order bias, it can be observed that among the 18
terms that are in principle generated by the chain rule, only
6 contribute to the second-order mean square error.
In the following we show that the expansion in the

inverse of the sample size is equivalent to an expansion
in 1=SNR. The derivation of the asymptotic orders in 1

n

would be the same for an expansion in any quantity if (A5)
and (A6) can be derived for a certain quantity 
 instead of
the sample size n. In this section we illustrate indeed that
this is the case where the signal-to-noise ratio for a set of
scalar data distributed according to a deterministic
Gaussian PDF takes the role of the sample size. The
probability distribution and parameter dependent part of
the likelihood function are given by

pðx; #Þ ¼ 1

ð2��2Þn=2 e
�ðPn

i¼1
ðxi��ð#ÞÞ2=�2Þ (A27)

lð#Þ ¼ �
P

n
i¼1ðxi ��ð#ÞÞ2

�2
(A28)

We also define the signal-to-noise ratio for this example as

 ¼ �2=�2 following standard practice for scalar deter-
ministic Gaussian data. We can obtain

H	ð#Þ ¼ 2�	ð#Þ
P

n
i¼1ðxi ��ð#ÞÞ

�2
(A29)

l	ð#Þ ¼ �n
X
p

cðpÞ�
p�	�p

�2
þ 2�	ð#Þ

P
n
i¼1ðxi ��ð#ÞÞ

�2

(A30)

�	 ¼ hl	ð#Þi ¼ n
�2

�2

�
�X

p

cðpÞ
�
�p

�

��
�	�p

�

��
(A31)

where 	 or p denote the order of the derivative or an
arbitrary set of derivatives.
From (A31) it becomes obvious that �	 is proportional

to not only the sample size n, but also to the 
. The term
inside the square brackets is simply a sum over normalized
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derivatives of the mean and contains information about the
shape of the signal. In the above equations we use

E½ðx��ð#ÞÞ2n� ¼ �2n ð2nÞ!
2nn!

: (A32)

The next step is to determine the dependence of
E½H	1

. . .H	p
� on 
. This is shown below:

E½H	1
. . .H	p

� ¼ 2p�	1
. . .�	p

1

�2p
E

�Xn
i¼1

ðxi ��ð#ÞÞp
�

¼ 2p
�
�	1

�

�
. . .

��	p

�

�
�p

�2p
�p

ð2 p
2Þ!

2p=2ðp2Þ!
np=2

¼
�
�2

�2

�
p=2

. . .

�
�	1

�

�
. . .

��	p

�

�
np=2

) E½H	1
. . .H	p

� / ðn
Þp=2 (A33)

It is therefore found that E½H	1
. . .H	p

� is proportional
to ð
Þ�=2 and we have proved the analogy between sample
size and 
.
Note that for deterministic Gaussian data, the noninteger

asymptotic orders of the bias are zero and the integer
orders are equal to b1, b2, etc. This is sufficient to prove
that the orders in 1=n of the bias expansion are also orders
in 1=
. This also holds for the variance expansion. A
similar, although longer proof can be written for the SNR
definition provided in (4.5).
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